e

TEXAS ADVANCED COMPUTING CENTER
WWW.TACC.UTEXAS.EDU

[BERYN el) T XAS
he Commonwealth's Flaashin Comous
The Co onwealtt OgSNp Oy The University of Texas at Austin

emi-Automatic Code Modernization
for Optimal Parallel 1/O

SCEC 2018 PRESENTED BY:
Trung Nguyen Ba:

December 14, 2018 thquyenba@cs.umass.edu
Ritu Arora: rauta@tacc.utexas.edu

mailto:tnguyenba@cs.umass.edu
mailto:rauta@tacc.utexas.edu

Interactive Parallelization Tool (IPT)

INTERACTIVE PARALLELIZATION TOOL

Terminal Compile Run Job History Help
Terminal
Your IPT terminal is ready.

ipt@4d6blfcaa34d:~$ IPT md.c
OTE: We currently support only C and C++ programs.

Please select a parallel programming model from the following available options:

Please note that by default, the MPI Enviroment Initialization functions will be set in the main
function.

Please choose the function that you want to parallelize from the list below
1 main

fil

2 : compute

3 : cpu_time

4 : dist

5 : initialize

6 : r8mat_uniform_ab
7 : timestamp

8 : update

IPT Design Overview

C/C++/Fortran
[GUI J [CLI J [WDSLI] Serial Program
(Input)
IPT Interfaces for Specifications

¥ -

- — —
[P e I Parallelization I Patterns (Design

Rules Templates)
v v v -
[Program Transformation Engine
e 1 A
=

e) (Copenr | [_cunn | [nona

Parallel Program (Output)

TAaCC)

Parallel MPI I/O

with IPT

Input Program
(C.CHH)

J

IPT Transformation Engine
(ROSE compiler rules and patterns)

Writing/Reading ASCII Files

User chosen the block of 1/0 code

@

IPT inserts code calculating file offset

and buffering file write/read statements

E IPT inserts the MPI I/O calls

Writing/Reading 1-D, 2-D arrays in Binary Files

User chosen the block of 1/0 code

IPT detects important writing/reading
information

IPT inserts MPI I/O and remove the serial

1/0 code

-

m IPT inserts the MPI I/O calls

Example of Optimizable I/O Patterns

Optimizable 1-D array 1/0 Optimizable 2-D array 1/O

int af[100]; int a[100][100];

for (int i1 =0, 1 < 100;i++) { for (int i =0; 1 < 100;1i++) {
fprintf (£, "%d,",ali]) for (int j =0; 7 < 100;3++) {

} fprintf (£, "%d,",al[i]);
}

Lustre filesystem

e File stripping to increase I/O bandwidth
o Inserting stripe size

o Inserting stripe count

Demo

https://docs.google.com/file/d/1nhViqKvUEg3StQ38zlMxacH2VnjycHo4/preview

Results and Evaluations

Examples Serial Time IPT Parallel Manual Parallel
Taken in Seconds Time Taken in Seconds | Time Taken in Seconds
4 MPI processes used | 4 MPI processes used
1-D Array - reading 42 0.55 0.39
1-D Array - writing 54 1.7 1.66
2-D Array - reading 36 0.53 0.55
2-D Array - writing 40 1.71 1.74

1-D integer array with 100,000,000 elements
2-D integer array with 10,000x10,000 elements

Examples Serial IPT Parallel Manual Parallel
Total #LoC (#LoC Inserted-or-Deleted) / (#LoC) | (#LoC Inserted-or-Deleted) / (Total #LoC)

1-D Array - reading 11 Lines deleted: 3 Lines deleted: 5

Lines added: 32 Lines added: 16

Total number of lines: 40 Total number of lines: 22

%age of code change: 87.5 %age of code change: 95.5
1-D Array - writing 13 Lines deleted: 3 Lines deleted: 6

Lines added: 36 Lines added: 15

Total number of lines: 46 Total number of lines: 22

%age of code change: 84.7 %age of code change: 95.5
2-D Array - reading 13 Lines deleted: 5 Lines deleted: 6

Lines added: 30 Lines added: 20

Total number of lines: 38 Total number of lines: 27

%age of code change: 92.1 %age of code change: 96.3
2-D Array - writing 18 Lines deleted: 5 Lines deleted: 7

Lines added: 38
Total number of lines: 51
%age of code change: 84.3

Lines added: 24
Total number of lines: 35
%age of code change: 85.6

LoC = Lines of Code

Conclusion

e Overview of parallelizing 1/0 code with IPT
e |PT supports both ASCII and Binary read and write
o It also supports file stripping on Luster filesystem
e Performance:
o |IPT-parallel version has almost the same performance as the manual
parallel version

o Reducing the manual effort for parallelizing code for more than 80%

Acknowledgement

The work presented in this paper was made possible through the National Science
Foundation (NSF) award number 1642396.

