Second Workshop on Software Challenges to Exascale Computing (13th, 14th December 2018, New Delhi)

A presentation on

A review of dimensionality reduction in high-dimensional data using multi-core and many-core architecture

by Mr. Siddheshwar Vilas Patil

Ph. D. Research Scholar (QIP, AICTE Scheme)

Under the Guidance of

Prof. Dr. D. B. Kulkarni

Registrar & Professor in Information Technology,

Walchand College of Engineering, Sangli, MH, India

(A Government Aided Autonomous Institute)

Outline

- Introduction
- Dimensionality Reduction
- Literature Review
- Challenges
- Parallel Computing Approaches
- Conclusion
- References

Introduction

- Massive amounts of high dimensional data
- Big Data Exponential growth and availability of data, 3Vs
- Afterwards, this list was extended with "Big Dimensionality" in Big Data .
- "Curse of Big Dimensionality", is boosted by the explosion of features (thousand or even millions of features)
- Early, Data scientists huge number of instances, while paying less attention to the features aspect.

Big Dimensionality

Millions of Dimensions

Example- libSVM Database

- In 1990s, the maximum dimensionality 62,000
- In 2000s **16 million**
- In 2010s **29 million**
- In this new scenario, it is common now to deal with millions of features, so the existing learning methods need to be adapted.

Summary of high-dimensional datasets

Data set	# samples	# features	#classes
Colon	62	2000	2
Brain tumor	50	10367	4
Leukemia	47	2000	2
Lymphomas	77	5470	2
Prostate	102	1500	2
Epsilon	400000	2000	2
ECBDL14	65003913	630	2
url	1916904	3231961	2
kddb	19264097	29890095	2

Scalability

• Scalability is defined as the effect that an increase in the size of the training set has on the computational performance of an algorithm: accuracy, training time and allocated memory.

Methods to perform DR

- Missing Values
- Low Variance- Let's think of a scenario where we have a constant variable (all observations have the same value) in data set
- Not improve the power of model because it has zero variance
- **High Correlation-** It is not good to have multiple variables of similar information.
- Pearson correlation matrix to identify the variables with high correlation.

Dimensionality Reduction

- Feature Extraction: Transforms original features to a set of new features
- More compact and of stronger discriminating power.
- Applications Image analysis, Signal processing, and Information retrieval

Dimensionality Reduction

- Feature Selection: remove the irrelevant and redundant features
- Two features are **redundant** to each other if their values are completely **correlated**
- Irrelevant: contain no information that is useful for the data mining task at hand
- Feature is relevant if it contains some information about the target (removal of this feature will decrease accuracy of classifier)

Dimensionality reduction

• Linear Methods:

- Principal Component Analysis (PCA)
- Linear Discriminate Analysis (LDA)
- Multidimensional Scaling (MDS)
- Non-negative Matrix Factorization(NMF)
- Lasso
- Non-Linear Methods:
 - Locally Linear Embedding (LLE)
 - Isometric Feature Mapping (Isomap)
 - Hilbert Schmidt Independence Criterion(HSIC)
 - Minimum Redundancy Maximum Relevancy (mRMR)
- Autoencoders (Linear as well Non Linear)

Feature selection methods

- **Individual evaluation** is also known as feature ranking and assesses individual features by assigning them weights according to their degrees of relevance.
- **Subset evaluation** produces candidate feature subsets based on a certain search strategy.
- Compared with the previous best one with respect to this measure.
- While the individual evaluation is incapable of removing redundant features because redundant features are likely to have similar rankings, the subset evaluation approach can handle feature redundancy with feature relevance.

Feature Selection Steps

- Feature selection is an **optimization** problem.
- Step 1: Search the space of possible feature subsets.
- Step 2: Pick the subset that is optimal or near-optimal with respect to some criterion

Feature Selection Steps (Cont'd)

SCEC 2018

Search strategies

 Exhaustive
 Heuristic

- Evaluation Criterion
 - Filter methods
 - Wrapper methods

Search Strategies

- Assuming d features, an exhaustive search would require:
- Examining all possible subsets of size m.
- Selecting the subset that performs the best according to the criterion.
- Exhaustive search is usually impractical.
- In practice, heuristics are used to speed-up search

Evaluation Strategies

• Filter Methods

Evaluation is **independent** of the classification method

- The criterion evaluates feature subsets based on their **class discrimination ability** (feature relevance):

• Mutual information or correlation between the feature values and the class labels

Evaluation Strategies

Wrapper Methods

-Evaluation uses criteria **related** to the classification algorithm.

-To compute the objective function, a **classifier is built** for each tested feature subset and its generalization accuracy is estimated (e.g. crossvalidation)

Evaluation Strategies

- Filter based
 - Chi-Squared
 - Information Gain
 - Correlation-Based Feature Selection, CFS
- Wrapper methods
 - recursive feature elimination
 - sequential feature selection algorithms
 - genetic algorithms

Feature Ranking

- Evaluate all d features individually using the criterion
- Select the top m features from this list.

Sequential forward selection (SFS) (heuristic search)

- First, the best **single** feature is selected
- Then, **pairs** of features are formed using one of the remaining features and this best feature, and the best pair is selected.
- Next, **triplets** of features are formed using one of the remaining features and these two best features, and the best triplet is selected.
- This procedure continues until a predefined **number of features are selected.**
- Wrapper methods (e.g. decision trees, linear classifiers) or Filter methods (e.g. mRMR) could be used
- Sequential backward selection (SBS)

Advantages of Dimensionality Reduction

- Helps in data compression, and hence reduced storage space.
- It reduces computation time.
- It remove redundant irrelevant features, if any
- Improves accuracy of Classification

Literature Review

- Implementation of the Principal Component Analysis onto High-Performance Computer Facilities for Hyperspectral Dimensionality Reduction: Results and Comparisons
- An Information Theory-Based Feature Selection Framework for Big Data Under Apache Spark
- Ultra High-Dimensional Nonlinear Feature Selection for Big Biological Data

Author	Dimensionality reduction algorithm	Parallel programming model	H/W configuration	Datasets
M. Yamada et al. [7]	Hilbert-schmidt independence criterion lasso with least angle regression	MapReduce framework (Hadoop and apache spark)	Intel xeon 2.4 GHz, 24 GB RAM (16 cores)	P53, Enzyme
Z. Wu et al.[12]	Principal component analysis	MapReduce framework (Hadoop and apache spark), MPI Cluster	Cloud computing (Intel Xeon E5630 CPUs(8 cores) 2.53 GHz, 5GB RAM, 292 GB SAS HDD), 8 slave(Intel Xeon E7-4807 CPUs (12 cores) 1.86 GHz)	AVIRIS cuprite hypersp ectral datasets
S. Ramirez - Gallego et al.[2]	Minimum redundancy maximum relevance (mRMR)	MapReduce on apache spark, CUDA on GPGPU	Cluster (18 computing nodes, 1 master node) computing nodes: Intel Xeon E5-2620, 6 cores/processor, 64 GB RAM	Epsilon, URL, Kddb

Author	Dimensionality reduction algorithm	Parallel programming model	H/W configuration	Datasets
E. Martel et al. [4]	Principal component analysis	CUDA on GPGPU	Intel core i7-4790, NVIDIA 32 GB Memory, GeForce GTX 680 GPU	Hyperspectr al data
J. Zubova et al. [13]	Random projection	MPI Cluster	-	URL, Kddb
L. Zhao et al. [5]	Distributed subtractive clustering	Cluster platforms	_	Economic data (China)
S. Cuomo et al.[8]	Singular value Decomposition	CUDA on GPGPU	Intel core i7, 8GB RAM, 2.8 GHz, GPU NVIDIA Quadro K5000, 1536 CUDA cores	-
W. Li et al. [9]	Isometric mapping (ISOMAP)	CUDA on GPGPU	Intel core i7-4790, 3.6 GHz, 8 cores, 32GB RAM, GPU Nvidia GTX 1080, 2560 CUDA cores, 8GB RAM	HIS datasets -Indian pines,Salinas , Pavia

- Exponential growth in the dimensionality and sample size.
- So, the existing algorithms not always respond in an adequate same way when deal with this new extremely high dimensions.

- Reducing data complexity is therefore crucial for data analysis tasks, knowledge inference using machine learning (ML) algorithms, and data visualization
- Ex. Use of feature selection in analyzing DNA microarrays, where there are many thousands of features, and a few tens to hundreds of samples

- The time and space cost of learning feature selection/classification algorithms is large and grows fast as the variables increase.
- Large amounts of data are needed for its independence test which makes the problem harder.
- Classification of the high-dimensional data is challenging due to the curse of dimensionality, heavy computational burden and decreasing precision of algorithms

- Feature selection methods
 - full search of the feature space,
 - testing subsets of features
 - evaluating them to find the final solution. The search space consists of the combination of all possible subsets, which for a dataset with n features produces a feature space of size 2^n .
- For problems with a large number of features, finding an optimal subset of features is usually intractable (NP-hard)

Computing approaches

- Distributed implementation
- Shared memory implementation

Scaling up FS

- Distributed Feature Selection
- Allocating the learning process among several workstations
- Advantages:
 - Reduction in execution time
 - Resources sharing
 - Better performance
- Use of GPGPU

GPGPU Computing and MapReduce

- GPGPUs are shared memory model and MapReduce is distributed computing frameworks aim at different scaling purposes.
- Scalability approaches include vertical and horizontal scaling.
- Vertical scaling: increasing the processing power, memory, and resources of a single node in a system (GPGPUs)
- Horizontal scaling: adds nodes to a system and distributes the workload across them (Hadoop and Spark MapReduce frameworks) 30

Drawbacks of MapReduce

- Not well suited for **iterative algorithms** due to performance impact of the launch overhead.
- The creation of the jobs, data transfers, and nodes synchronization through the network impose an overhead
- Jobs run in isolation which increases the difficulty of implementing shared communication between intermediate processes.
- it requires a fault tolerant distributed file system, such as the Hadoop distributed file system (HDFS).

Advantage of GPGPU

- Parallel algorithms running on GPGPUs- achieve up to 100X speedup over similar CPU algorithms
- Very small kernel launch overhead, which permits executing parallel tasks with no delay and obtain almost instant results.
- Scalability to big data is limited due to the GPU memory capacity. Multi-GPU and distributed-GPU solutions combine hardware resources to scale-out to bigger data.

Optimizations: Data-access pattern

General Architecture

Conclusion

- Need to focus on important issues of high dimensionality problems and dimensionality reduction model on it
- High-performance computing approaches are best suitable for solving high dimensional data problems.
- Parallel processing techniques and computational power of multi-core and many-core architecture accelerates the performance for solving high dimensional problems.

References

[1] E. Martel, R. Lazcano, J. Lopez, D. Madronal, R. Salvador, et al., "Implementation of the Principal Component Analysis onto High-Performance Computer Facilities for Hyperspectral Dimensionality Reduction: Results and Comparisons", Remote Sens, 10, 864, 2018

[2] S. Ramirez-Gallego et al, "An Information Theory-Based Feature Selection Framework for Big Data under Apache Spark", IEEE Transactions on Systems, Man, and Cybernetics: Systems. 48, 9, 1441-1453, 2018

[3] T. Gao and Q. Ji, "Efficient Markov Blanket Discovery and Its Application", IEEE Transactions on Cybernetics, vol. 47, no. 5, pp. 1169-1179, May 2017.

[4] A. L. Heureux, K. Grolinger, H. F. Elyamany and M. A. M. Capretz, "Machine Learning With Big Data: Challenges and Approaches", IEEE Access, vol. 5, pp. 7776-7797, 2017

[5] L. Zhao, Z. Chen, et al., "Distributed feature selection for efficient economic big data analysis", IEEE Transactions on Big Data , 2018

References

[6] L. Kasun, Y. Yang, G. Huang and Z. Zhang, "*Dimension Reduction With Extreme Learning Machine*", IEEE Transactions on Image Processing, vol. 25, no. 8, pp. 3906-3918, 2016

[7] M. Yamada *et al.*, "Ultra High-Dimensional Nonlinear Feature Selection for Big Biological Data," in *IEEE Transactions on Knowledge and Data Engineering*, vol. 30, no. 7, pp. 1352-1365, 1 July 2018.

[8] Cuomo, S., Galletti, A., Marcellino et al., "On gpu-cuda as preprocessing of fuzzyrough data reduction by means of singular value decomposition", Soft Computing 22(5), 1525-1532, 2018

[9] Li, W., Zhang, L., Zhang, L., Du, B., "GPU parallel implementation of isometric mapping for hyperspectral classification", IEEE Geoscience and Remote Sensing Letters 14(9), 1532{1536 (2017)

References

[10] T. Mingjie, Y. Yu, W. G. Aref, Q. Malluhi and M. Ouzzani, "*Efficient Parallel Skyline Query Processing for High-Dimensional Data*", IEEE Transactions on Knowledge and Data Engineering, 2018

[11] K. Passi, A. Nour and C. K. Jain, "*Markov blanket: Efficient strategy for feature subset selection method for high dimensional microarray cancer datasets*", IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2017

[12] Z. Wu, Y. Li, A. Plaza, J. Li, F. Xiao and Z. Wei, "*Parallel and Distributed Dimensionality Reduction of Hyperspectral Data on Cloud Computing Architectures*", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 6, pp. 2270-2278, 2016

[13] J. Zubova, M. Liutvinavicius, O. Kurasova:, "*Parallel computing for dimensionality reduction*", Communications in Computer and Information Science, vol. 639. Springer, Cham, 2016

