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Introduction

• Massive amounts of high dimensional data

• Big Data - Exponential growth and availability of data, 3Vs

• Afterwards, this list was extended with “Big Dimensionality” in

Big Data .

• “Curse of Big Dimensionality”, is boosted by the explosion of

features ( thousand or even millions of features)

• Early, Data scientists - huge number of instances, while paying

less attention to the features aspect.
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Millions of Dimensions

Big Dimensionality
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• In 1990s, the maximum dimensionality -

62,000

• In 2000s - 16 million

• In 2010s - 29 million

• In this new scenario, it is common now to

deal with millions of features, so the existing

learning methods need to be adapted.

SCEC 2018 5

Example- libSVM Database 

1/24/2019



SCEC 2018 6

Summary of high-dimensional datasets

1/24/2019



• Scalability is defined as the effect that an

increase in the size of the training set has on

the computational performance of an

algorithm: accuracy, training time and

allocated memory.
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• Missing Values

• Low Variance- Let’s think of a scenario where we have a

constant variable (all observations have the same value) in

data set

• Not improve the power of model because it has zero variance

• High Correlation- It is not good to have multiple variables of

similar information.

• Pearson correlation matrix to identify the variables with high

correlation.

SCEC 2018 8
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• Feature Extraction: Transforms original

features to a set of new features

• More compact and of stronger discriminating

power.

• Applications - Image analysis, Signal

processing, and Information retrieval
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• Feature Selection: remove the irrelevant and

redundant features

• Two features are redundant to each other if

their values are completely correlated

• Irrelevant: contain no information that is useful

for the data mining task at hand

• Feature is relevant if it contains some

information about the target (removal of this

feature will decrease accuracy of classifier)
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• Linear Methods:

– Principal Component Analysis (PCA)

– Linear Discriminate Analysis (LDA)

– Multidimensional Scaling (MDS)

– Non-negative Matrix Factorization(NMF)

– Lasso

• Non-Linear Methods:

– Locally Linear Embedding (LLE)

– Isometric Feature Mapping (Isomap)

– Hilbert Schmidt Independence Criterion(HSIC)

– Minimum Redundancy Maximum Relevancy (mRMR)

• Autoencoders (Linear as well Non Linear)
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• Individual evaluation is also known as feature ranking and

assesses individual features by assigning them weights

according to their degrees of relevance.

• Subset evaluation produces candidate feature subsets based

on a certain search strategy.

• Compared with the previous best one with respect to this

measure.

• While the individual evaluation is incapable of removing

redundant features because redundant features are likely

to have similar rankings, the subset evaluation approach can

handle feature redundancy with feature relevance.
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• Feature selection is an

optimization problem.

• Step 1: Search the space of

possible feature subsets.

• Step 2: Pick the subset that

is optimal or near-optimal

with respect to some

criterion
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• Search strategies

–Exhaustive

–Heuristic

• Evaluation Criterion

- Filter methods

- Wrapper methods
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• Assuming d features, an exhaustive search would

require:

• Examining all possible subsets of size m.

• Selecting the subset that performs the best

according to the criterion.

• Exhaustive search is usually impractical.

• In practice, heuristics are used to speed-up search
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• Filter Methods

– Evaluation is independent
of the classification method

– The criterion evaluates
feature subsets based on their
class discrimination ability
(feature relevance):

• Mutual information or
correlation between the
feature values and the class
labels
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• Wrapper Methods

–Evaluation uses criteria

related to the classification

algorithm.

–To compute the objective

function, a classifier is built

for each tested feature subset

and its generalization accuracy

is estimated (e.g. cross-

validation)
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Evaluation Strategies 

• Filter based
– Chi-Squared

– Information Gain

– Correlation-Based Feature Selection, CFS

• Wrapper methods

– recursive feature elimination

– sequential feature selection algorithms

– genetic algorithms
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• Evaluate all d features individually using the criterion 

• Select the top m features from this list. 

Sequential forward selection (SFS) (heuristic search)

• First, the best single feature is selected

• Then, pairs of features are formed using one of the remaining
features and this best feature, and the best pair is selected.

• Next, triplets of features are formed using one of the
remaining features and these two best features, and the best
triplet is selected.

• This procedure continues until a predefined number of
features are selected.

• Wrapper methods (e.g. decision trees, linear classifiers) or
Filter methods (e.g. mRMR) could be used

• Sequential backward selection (SBS)
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• Helps in data compression, and hence reduced

storage space.

• It reduces computation time.

• It remove redundant irrelevant features, if any

• Improves accuracy of Classification

SCEC 2018 20

Advantages of Dimensionality Reduction
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• Implementation of the Principal Component Analysis onto High-

Performance Computer Facilities for Hyperspectral

Dimensionality Reduction: Results and Comparisons

• An Information Theory-Based Feature Selection Framework for

Big Data Under Apache Spark

• Ultra High-Dimensional Nonlinear Feature Selection for Big

Biological Data
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Author Dimensionality

reduction 

algorithm

Parallel 

programming

model

H/W configuration Datasets

M. 

Yamada

et al. [7]

Hilbert-schmidt

independence

criterion lasso

with least

angle regression

MapReduce

framework

(Hadoop and

apache spark)

Intel xeon 2.4 GHz, 24 GB

RAM (16 cores)

P53, 

Enzyme

Z. Wu 

et 

al.[12]

Principal 

component

analysis

MapReduce

framework

(Hadoop and

apache spark),

MPI Cluster

Cloud computing (Intel

Xeon E5630 CPUs(8 cores)

2.53 GHz, 5GB RAM,

292 GB SAS HDD), 8

slave(Intel Xeon E7-4807

CPUs (12 cores) 1.86 GHz)

AVIRIS

cuprite 

hypersp

ectral

datasets

S.

Ramirez

-

Gallego 

et al.[2]

Minimum 

redundancy

maximum

relevance

(mRMR)

MapReduce

on apache

spark, CUDA

on GPGPU

Cluster (18 computing

nodes, 1 master node) 

computing nodes: Intel Xeon 

E5-2620, 6 cores/processor,

64 GB RAM

Epsilon,

URL, 

Kddb
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Author Dimensionality

reduction 

algorithm

Parallel 

programming

model

H/W configuration Datasets

E. Martel

et al. [4]

Principal 

component

analysis

CUDA on

GPGPU

Intel core i7-4790, NVIDIA

32 GB Memory, GeForce

GTX 680 GPU

Hyperspectr

al data

J. Zubova 

et al. [13]

Random 

projection

MPI Cluster - URL, Kddb

L. Zhao 

et

al. [5]

Distributed 

subtractive

clustering

Cluster platforms - Economic

data (China)

S. 

Cuomo et 

al.[8]

Singular value

Decomposition

CUDA on

GPGPU

Intel core i7, 8GB RAM, 

2.8 GHz, GPU NVIDIA 

Quadro K5000, 1536 

CUDA cores

-

W. Li et

al. [9]

Isometric 

mapping

(ISOMAP)

CUDA on

GPGPU

Intel core i7-4790, 3.6 GHz, 

8 cores, 32GB RAM, GPU 

Nvidia GTX 1080, 2560 

CUDA cores, 8GB RAM

HIS datasets 

-Indian 

pines,Salinas

, Pavia



• Exponential growth in the dimensionality and

sample size.

• So, the existing algorithms not always respond

in an adequate same way when deal with this

new extremely high dimensions.
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• Reducing data complexity is therefore crucial

for data analysis tasks, knowledge inference

using machine learning (ML) algorithms, and

data visualization

• Ex. Use of feature selection in analyzing DNA

microarrays, where there are many thousands

of features, and a few tens to hundreds of

samples
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• The time and space cost of learning feature

selection/classification algorithms is large and

grows fast as the variables increase.

• Large amounts of data are needed for its

independence test which makes the problem

harder.

• Classification of the high-dimensional data is

challenging due to the curse of dimensionality,

heavy computational burden and decreasing

precision of algorithms
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• Feature selection methods –

– full search of the feature space,

– testing subsets of features

– evaluating them to find the final solution. The search space

consists of the combination of all possible subsets, which

for a dataset with n features produces a feature space of

size 2n.

• For problems with a large number of features, finding

an optimal subset of features is usually intractable

(NP-hard)
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• Distributed implementation 

• Shared memory implementation
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Computing approaches



• Distributed Feature Selection

• Allocating the learning process among several

workstations

• Advantages:

– Reduction in execution time

– Resources sharing

– Better performance

• Use of GPGPU
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• GPGPUs are shared memory model and MapReduce

is distributed computing frameworks aim at different

scaling purposes.

• Scalability approaches include vertical and horizontal

scaling.

• Vertical scaling: increasing the processing power,

memory, and resources of a single node in a system

(GPGPUs )

• Horizontal scaling: adds nodes to a system and

distributes the workload across them (Hadoop and

Spark MapReduce frameworks)
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Drawbacks of MapReduce 

• Not well suited for iterative algorithms due to

performance impact of the launch overhead.

• The creation of the jobs, data transfers, and nodes

synchronization through the network impose an

overhead

• Jobs run in isolation which increases the difficulty of

implementing shared communication between

intermediate processes.

• it requires a fault tolerant distributed file system, such

as the Hadoop distributed file system (HDFS).
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• Parallel algorithms running on GPGPUs- achieve up to

100X speedup over similar CPU algorithms

▪ Very small kernel launch overhead, which permits

executing parallel tasks with no delay and obtain

almost instant results.

▪ Scalability to big data is limited due to the GPU

memory capacity. Multi-GPU and distributed-GPU

solutions combine hardware resources to scale-out to

bigger data.
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Conclusion

• Need to focus on important issues of high

dimensionality problems and dimensionality

reduction model on it

• High-performance computing approaches are best

suitable for solving high dimensional data

problems.

• Parallel processing techniques and computational

power of multi-core and many-core architecture

accelerates the performance for solving high

dimensional problems.
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