Analyzing IO Usage Patterns of User Jobs to Improve Overall HPC System Efficiency

Syed Sadat Nazrul*, Cherie Huang*, Mahidhar Tatineni, Nicole Wolter, Dimitry Mishin, Trevor Cooper and Amit Majumdar San Diego Supercomputer Center University of California San Diego * students at the time of project

SCEC2018, Delhi, Dec 13-14, 2018

Comet "HPC for the long tail of science"

iPhone panorama photograph of 1 of 2 server rows

Comet: System Characteristics

- Total peak flops ~2.1 PF
- Dell primary integrator
 - Intel Haswell processors w/AVX2
 - Mellanox FDR InfiniBand

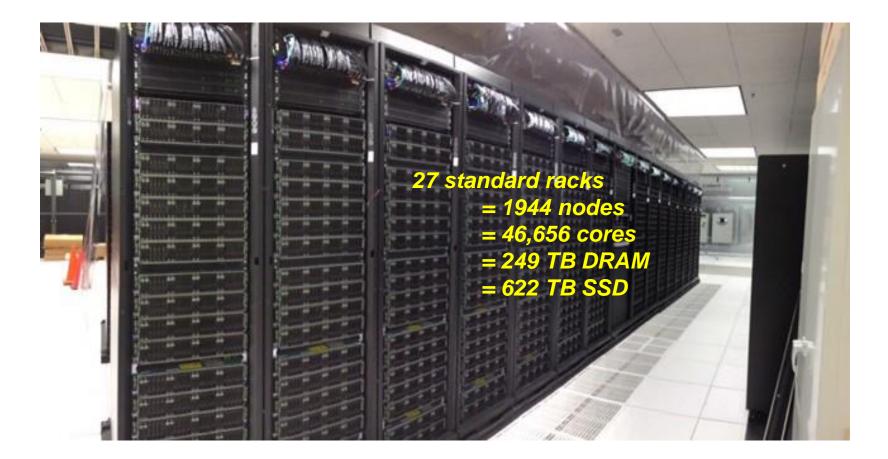
1,944 standard compute nodes (46,656 cores)

- Dual CPUs, each 12-core, 2.5 GHz
- 128 GB DDR4 2133 MHz DRAM
- 2*160GB GB SSDs (local disk)

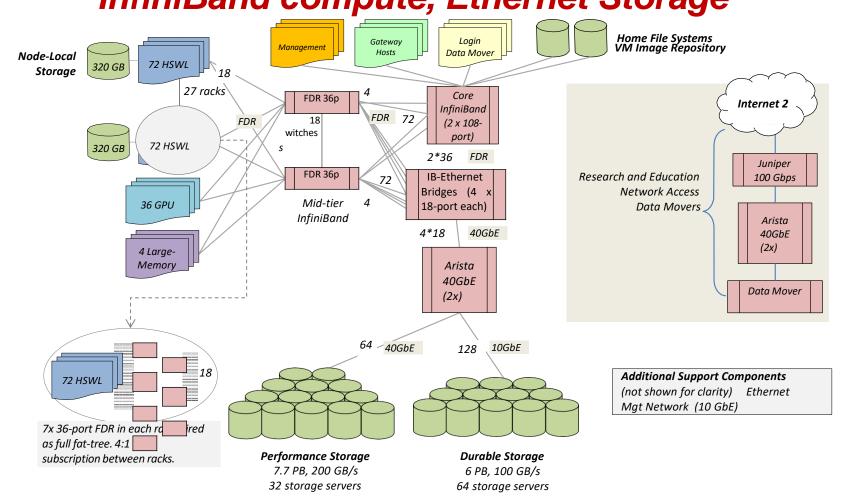
• 72 GPU nodes

- 36 nodes same as standard nodes plus Two NVIDIA K80 cards, each with dual Kepler3 GPUs
- 36 nodes with 2 14-core Intel Broadwell CPUs plus 4 NVIDIA P100 GPUs
- 4 large-memory nodes
 - 1.5 TB DDR4 1866 MHz DRAM
 - Four Haswell processors/node
 - 64 cores/node

Hybrid fat-tree topology


- FDR (56 Gbps) InfiniBand
- Rack-level (72 nodes, 1,728 cores) full bisection bandwidth
- *4:1 oversubscription cross-rack*
- Performance Storage (Aeon)
 - 7.6 PB, 200 GB/s; Lustre
 - Scratch & Persistent Storage segments
- Durable Storage (Aeon)
 - 6 PB, 100 GB/s; Lustre
 - Automatic backups of critical data
- Home directory storage
- Gateway hosting nodes
- Virtual image repository
- 100 Gbps external connectivity to Internet2 & ESNet

SDSC SAN DIEGO SUPERCOMPUTER CENTER


~67 TF supercomputer in a rack

And 27 single-rack supercomputers

Comet Network Architecture *InfiniBand compute, Ethernet Storage*

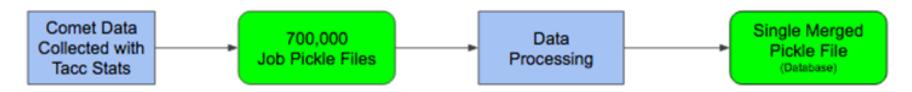
SDSC SAN DIEGO SUPERCOMPUTER CENTER

Comet: Filesystems

- Lustre filesystems Good for scalable large block I/O
 - Accessible from all compute and GPU nodes.
 - /oasis/scratch/comet 2.5PB, peak performance: 100GB/s. Good location for storing large scale scratch data during a job.
 - /oasis/projects/nsf 2.5PB, peak performance: 100 GB/s. Long term storage.
 - Not good for lots of small files or small block I/O.
- SSD filesystems
 - /scratch local to each native compute node 210GB on regular compute nodes, 285GB on GPU, large memory nodes, 1.4TB on selected compute nodes.
 - SSD location is good for writing small files and temporary scratch files. Purged at the end of a job.
- Home directories (/home/\$USER)
 - Source trees, binaries, and small input files.
 - Not good for large scale I/O.

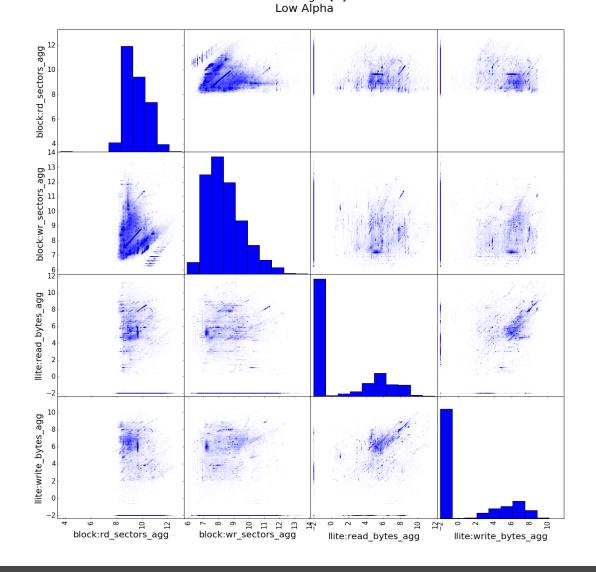
SDSC SAN DIEGO SUPERCOMPUTER CENTER

Motivation


- Currently HPC systems monitor/collect lots of data
 - Network traffic, file system traffic (I/O), CPU utilization etc.
 - Analyzing users' job data can provide insight into static and dynamic loads on
 - File system
 - Network
 - Processors
- How to analyze data, observe patterns, use those for improved system operation
- Analysis of I/O usage patterns of users' jobs
 - Insight into which jobs to schedule together or not
 - System admins perform I/O work coordinating with specific user jobs etc.

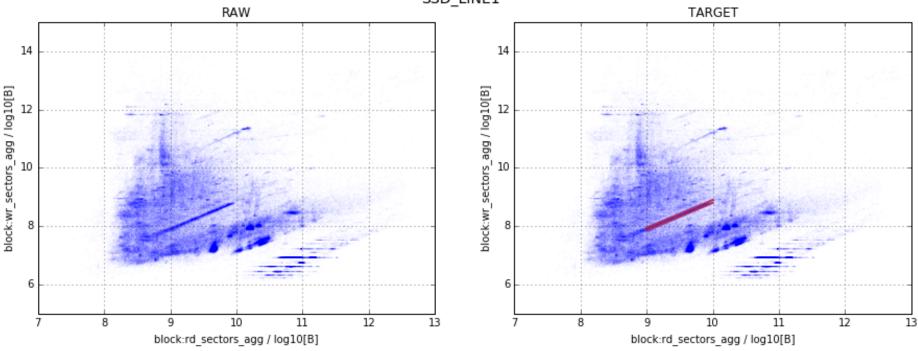
This work - preliminary

- Looked at I/O traffic of users' job on Comet for three months – early phase of Comet: June – November 2015
- Analyze data and extract information
 - Monitor system operation
 - Improve system operation
- Aggregate I/O usage pattern of users' jobs
 - On NFS, Lustre and node-local SSDs
- Data science applied to tie I/O usage pattern to users' particular codes

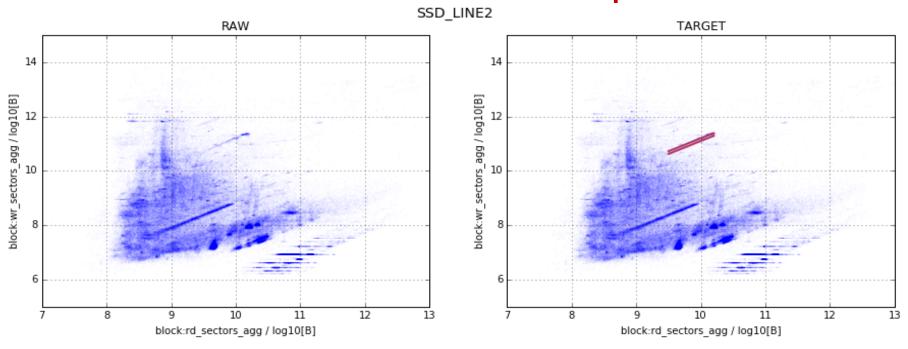

Data Analysis

- Data collected using TACC Stats (still being collected continuously)
- ~700,000 jobs that ran during the time period, and is around 500 GB in size
 - Collects user job's I/O stats on file systems every 10 min interval
- Looked at Compute and GPU queue (not shared queue for first pass)
- Data can be quickly extracted as inputs for learning algorithms – NFS, Lustre, node local SSD I/O data

• Ran controlled IOR for validating the data processing pipeline


Scatter plot No Clustering Units: Log10[B]

SAN DIEGO SUPERCOMPUTER CENTER


- scatter matrix from Scikit-learn
- Block refers to SSD
- llite refers to Lustre
- Analyzed the linear patterns
- Tried to tie to apps

Linear Pattern Block read versus block write pattern

- Linear patterns formed when analyzing aggregate write I/O and aggregate read I/O on the SSD
- Pertaining to all the jobs that are part of this pattern, we have seen that 1,877 (76%) jobs are Phylogentics Gateway (CIPRES running RXML code) and Neuroscience Gateway (was mostly running spiking neuronal simulation) jobs
- We know that these jobs only produce I/O to NFS
- However they used OpenMPI for their MPI communication.
- This leads to runtime I/O activity (for example memory map information) in /tmp which is located on the SSDs

Linear Pattern Block read versus block write pattern

- Another linear pattern formed when analyzing aggregate write I/O and aggregate read I/O on
- the SSD
- Pertaining to all the jobs that are part of this pattern, we have seen that 208 (82%) jobs have the same job name and from a particular project group
- Further investigation and discussion with the user showed that these I/O patterns were produced by Hadoop jobs
- On Comet, Hadoop is configured to use local SSD as the basis for its HDFS file system
- Hence, as expected, there is a significant amount of I/O to SSDs from these jobs

Linear pattern SSD read vs Lustre write; SSD read vs Lustre read

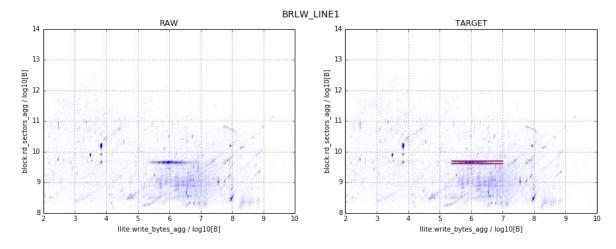


Fig. 6. Block read versus lustre write pattern (BRLW_LINE1).

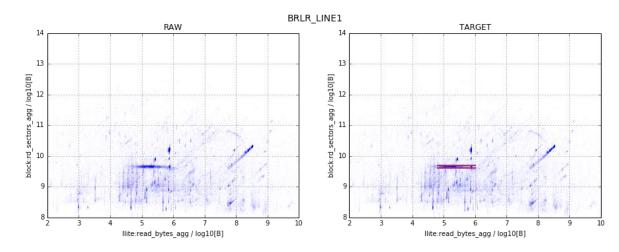


Fig. 7. Block read versus lustre read pattern (BRLR_LINE1) - horizontal line.

SDSC SAN DIEGO SUPERCOMPUTER CENTER

Linear pattern

SSD read vs Lustre write; SSD read vs Lustre read

- Horizontal linear patterns on SSD read I/O against Lustre Write I/O and Lustre Read I/O respectively
- Both show similar patterns.
- This indicates that they were both created by similar applications
- BRLW_LINE1 contains 232 (28%) VASP and CP2K jobs and 134 (16%) NAMD jobs
- We can say these applications require ~4 GB of read from the local SSD (this includes both scratch and system directories) and between 100 kB and 10 MB Lustre I/O (both read and write) to run the job

K-means analysis cluster center marks 'X' and cluster 10 encircled

Units: Log10[B] Without Cluster 0 (97% of jobs) block:rd_sectors_agg 14 12 llite:read_bytes_agg -2 llite:write_bytes_agg -2 4 0 ୁ କ ୁ block:rd_sectors_agg 12 9 [▶] [∞] ⁶ ⁹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ 0 \sim 9 œ 10 27 0 2 8 2 llite:read_bytes_agg llite:write_bytes_agg

SAN DIEGO . SUPERCOMPUTER CENTER

K-means cluster analysis

- The teal colored cluster as shown in Figure, is characterized by low SSD read and SSD write (100 MB - 1 GB)
- However, this cluster shows very high Lustre read (>10 GB) and variable Lustre write (100 kB -1 GB)
- At least 324 (89%) of these jobs had projects that indicate that these are astrophysics jobs

Summary

- We did some other analysis such as using DBSCAN, longer (than 10 mins) time window for data etc.
 - No distinct patterns
- Presented work show we were able to analyze distinct patterns in the dataset caused by different applications
- We only looked at aggregate data
 - In the future examine time series data beginning, middle end of job
- We can also analyze jobs separately based on parameters like run time of the job

Acknowledgement: Partial funding from Engility for student research internship