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High-Performance Software Development Challenge
♦ Low Performance

▪ Very challenging to achieve high performance for GPUs and FPGAs

▪ Requires understanding of low-level arch. details

♦ Low Productivity

▪ Need to program using different programming models: OpenMP for 
multicores, CUDA/OpenCL for GPUs, Verilog/VHDL for FPGAs

▪ Steep learning curve: CUDA known by few; Verilog/VHDL known by fewer

▪ Parallel programming is much more difficult than sequential C/C++

♦ No Portability

▪ Multiple versions of code must be maintained for different platforms

♦ Challenges will get worse in the future: compilers must do more!

▪ Research Direction 1: Understanding Data Movement Complexity

▪ Research Direction 2: Domain/Pattern-Specific Transformation/Code-Gen
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Research Direction 1: Data Movement Complexity
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Data Movement Cost: Energy Trends

Source: Jim Demmel, John Shalf
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Data Movement Cost: Performance Trends

♦ Nvidia GPUs over 5 generations: Fermi, Maxwell, Kepler, Pascal, Volta

♦ Peak GFLOPs and Peak Mem BW have both increased

♦ But machine balance (Peak_GFLOPs/Peak_BW) has steadily risen => more and more 

constrained by data movement 



Computational vs. Data Movement Complexity 

for (i=1; i<N-1; i++)

for (j=1;j<N-1; j++)

A[i][j] = A[i][j-1] + A[i-1][j];

for(it = 1; it<N−1; it +=B)

for(jt = 1; jt<N−1; jt +=B)

for(i = it; i < min(it+B, N−1); i++)

for(j = jt; j < min(jt+B, N−1); j++) 

A[i][j] = A[i−1][j] + A[i][j−1];

Untiled version 

Comp. complexity: (N-1)2 Ops

Tiled Version

Comp. complexity: (N-1)2 Ops

1. Data movement cost is different 
for two comp. equiv. versions

2. Also depends on cache size

Question: Can we achieve lower 
cache misses than this tiled version? 
How can we know when much 
further improvement is not possible?

Question: What is the lowest 
achievable data movement cost 
among all possible equivalent 
versions of a computation?

Current tools do not address this 
question



for (i=1; i<N-1; i++)

for (j=1;j<N-1; j++)

A[i][j] = A[i][j-1] + A[i-1][j];

for(it = 1; it<N−1; it +=B)

for(jt = 1; jt<N−1; jt +=B)

for(i = it; i < min(it+B, N−1); i++)

for(j = jt; j < min(jt+B, N−1); j++) 

A[i][j] = A[i−1][j] + A[i][j−1];

Modeling Data Movement Complexity: CDAG 
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Minimum possible data movement cost?

No known effective solution to problem

Develop upper bounds on min-cost

Develop lower bounds on min-cost

Hong and Kung: The Red-Blue Pebble Game, STOC 1981



Lower Bounds: Matrix Multiplication

u Hong/Kung [STOC 1981]: Any valid 

implementation of the standard mat-mult

algorithm on a system with cache capacity C 

will require Ω(N3/√C) volume of data movement 

between main-memory and cache

u Irony et al. [JPDC 2004]: Lower bound with 

scaling constant: 

u Dongarra et al. [JFOCS 2008]: Improved 

constant from 1/(2√2) to 1.83

u Smith, Van de Geijn; Langou: 1.83->2

u Efficient tiled execution has data volume of 

2N3/√C => Minimal possible data movement!

u Open problem: Bounds for other algorithms

▪ Tight data-movement lower bounds (with scaling 

constants) are unknown for most algorithms

for (i=0; i<N; i++)

for (j=0;j<N;j++)

for (k=0;k<N;k++)

C[i][j] += A[i][k]*B[k][j];

Main Memory

Cache size

C

Processor

Data movement

1

2 2

N 3

C
-C
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CPU to use them can be challenging. The other memory 
types in a GPU are exposed to the programmer, and this 
makes them applicable to a wider variety of situations.  

Figure 2. shows the memory capacities for representative 
CPUs and GPUs. The CPU memories decrease in capacity 
sharply as we move up the hierarchy. By contrast, GPU 
memories exhibit an “hourglass” shape, and there is actually 
more full-speed register memory than L2 cache. Between 
these devices, there is a 3-order-of-magnitude gap in register 
capacity. For problems that allow full use of GPU register 

memory (example later) performance is extremely high.    
A simple example of the application of rooflining is 

given in Table 1. The three most common bottleneck 
operations in BIDMach are SPMM (Sparse-Dense Matrix 
Multiply), SPMM with transpose and sparsely-filtered dense-
dense multiply, denoted SDDMM(S,A,B) for sparse S and 

dense A,B. SDDMM(S,A,B) is equivalent to (A * B) ° S 

where ° is the Hadamard (element-wise) product. The first 
two arise in algorithms whose loss function has the form 

  
L = f(AS) 

 
for input data S and a model matrix A. Columns of S are 
(sparse vector) input instances, and S typically has several 
columns comprising a minibatch of instances. This formula 
covers logistic and linear regression and SVM, and causal 
estimators derived from them. The gradient of the loss has 
the form  
 

dL/dA = f 
’
(AS) S

T
 

 
and to evaluate it we need a dense-sparse multiply for AS and 
a dense-sparse-transposed multiply for f’(.) S

T
. Factor models 

such as LDA (Latent Dirichlet Allocation) [LDA], NMF 

(Non-negative Matrix Factorization) [NMF] and SVD++ (a 
collaborative filtering algorithm) [SVD++] use a loss that 
can be written as: 
 

L = gS(A
T
 B)                                   (1) 

 
The matrix factors A and B are dense here, and the loss 
typically depends only on the values of the product ATB at 
the non-zeros in the sparse matrix S. Its derivatives wrt the 
factors A, B are: 
 

dL/dA = B gS’(A
T B)T      and      dL/dB = A gS’(A

T B)   (2) 
 
and evaluation of these gradients requires the three 
primitives described so far: (i) SDMM(S,A,B), for g(..) and 
g’(..), (ii) A * S for A g’(…) and (iii) A * S

T
 for B g’(…)

T
 .  

A naïve, main-memory roofline is 72 gflops for all these 
operations, based on the following argument: The dense 
input matrix elements must be read and written once for 
sufficiently sparse S, and two operations (multiply-add) 
performed on them, or one operation per word. The 
coefficients of S are read but used many times and do not 
affect the roofline. The memory throughput for the K40 
device on which these measurements were made is 288 GB/s 
or 72 Gwords/sec, yielding 72 Gflops. 

The third operation is particularly close to its roofline, 
while the first is about 60% of it. The third operation only 
reads A and B, and so reads dominate the running time. The 
other two operations include reads and writes in roughly 
equal proportion. This likely accounts for the difference in 
their throughputs.  

There is a significant difference between A*S and A*ST. 
Although these routines use very similar code, the coefficient 
ordering in A*S allows output values for a given column to 
be accumulated in registers (BIDMach uses column-major 
order). For A*S

T
 on the other hand, this is not possible (S

T
 is 

not ordered by columns) and an atomic main-memory add-
write must be used instead. This operation is more expensive 
than a normal write and accounts for the difference. Roofline 
design cannot account for all these nuances, but it can 
reliably determine when a kernel is far from its theoretical 
limit. Knowing this, the code designer can strive to bring it 
close, and typically (almost always in our experience) 
eventually succeed. These operations are the most important 

TABLE I.       ROOFLINES AND OBSERVED 

PERFORMANCE FOR SPARSE MATRIX PRIMITIVES 

Operation Roofline Limit Observed Performance

A * S 72 gflops 45 gflops 

A * ST 72 gflops 31 gflops 

S ° (A * B) 72 gflops 63 gflops 

TABLE II      PERFORMANCE COMPARISON ON REPRESENTATIVE DATASETS 

Systems A/B Algorithm Dataset (Size) Dim Time (s) Cost ($) Energy (KJ)

Spark-72 
BIDMach 

Logistic Regression RCV1 (0.5GB) 103 30
14 

0.07
0.002 

120 
3 

Spark-128 
BIDMach 

Logistic Regression  Criteo 
(12 GB) 

1 400
81 

1.00
0.01 

2500
6 

Spark-384 
BIDMach 

K-Means MNIST (24GB) 4096 1100
735 

9.00
0.12 

22000
140 

GraphLab-576 
BIDMach 

Matrix Factorization Netflix 
(4 GB) 

100 376
90 

16
0.015 

10,000
20 

Yahoo-1000 
BIDMach 

LDA (Gibbs) News 
(100 GB) 

1024 220k
300k 

40k
100 

4E7 
6E4 

 

♦ Recent paper contrasts achieved performance by new GPU implementations 
of sparse-dense matrix-multiplication (SpMM) with GPU “roofline” limits

♦ But OI used is not a proper upper-bound for SpMM, because it is based on 
pessimistic reasoning about possible data reuse

♦ Leads to incorrect conclusion that developed implementation is quite close to 
“best” possible 
▪ >150 GFLOPs measured on same GPU with Nvidia’s cuSPARSE SpMM

Example: Erroneous Roofline Limit
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are O(n) for n input instances and are therefore 
undifferentiated, while constant factors make or break a 
large-scale calculation. In the post-Moore’s-Law world, the 
constants associated with common operations (retrieving an 
array element or doing an addition) vary over five orders of 
magnitude. Single-word main memory access take tens of 
nanoseconds while register operations on a GPU (factoring 
in parallelism) equate to tenths of a picosecond. This ratio is 
significantly more than the speedup that is practically 
feasible by parallelizing on a cluster, and single-machine 
optimization is clearly more economical in energy, space and 
capital and running costs. Roofline design leads to a focus on 
single-machine optimization first, and cluster computing 
second. Our benchmarks on CPUs have shown that most 
other systems are far from their roofline limits. This suggests 
that without explicit roofline design, performance tends to be 
well below the limits. Roofline design applies in very similar 
fashion to single machines (based on ALU, memory and I/O 
performance), and to clusters (based on network throughput).  

Roofline design applies to any hardware platform, but we 
have found the largest gains with GPUs. This is not too 
surprising – while they have shown great promise in image 
and scientific computing tasks, their potential for machine 
learning (with the significant exception of deep learning) has 
not been thoroughly explored. Secondly, the standard matrix 
toolkit for sparse operations on GPUs, e.g. NVIDIA’s 
Cusparse library, is far from the roofline limit on typical 
(power law, sparse) machine learning data. This again 
appears to be a consequence of priority for scientific data in 
the development of those kernels. By taking a roofline 
approach and optimizing for power law data, we have 
written our own sparse matrix kernels, and optimized them 
close to their theoretical (roofline) limits. This leads to 
significant speedups across a broad range of ML algorithms. 

A. Contributions  

An early overview of the BIDMach toolkit was presented 
in [2]. The Kylix system was described in [3]. The approach 
underlying these systems, i.e. roofline design which we 
describe here, has not previously been described or applied 
to scalable machine learning. This paper includes a much 
more thorough and representative set of benchmarks, and 
several industrial case studies which validate the 
performance of the toolkit in real-world settings. We also 

describe a general approach for model scalability on single 
machines which is new.  

II. ROOFLINE DESIGN 

The graphic in Fig. 1 depicts a performance roofline for 
typical processor hardware today. This graphic focuses on 
ALU and memory which are the primary determinants of 
performance for single-machine algorithms. 

The y-axis of Fig. 1 shows the potential throughput in 
arithmetic operations/second. The x-axis is “operational 
intensity” which is the number of operations applied to each 
data value (in units of operations per byte). The intensity is 
much lower for sparse operations – elements referenced by 
sparse matrix indices in a matrix multiply may be used only 
once, while dense matrix multiply typically uses each datum 
many times. The horizontal lines reflect the maximum ALU 
throughput for each type of processor (the graph is drawn for 
Intel i7 and NVIDIA GTX-680 processors). GPUs have 
much higher ALU throughput since the GPU chip area is 
almost entirely ALU vs. about 10% ALU for a modern CPU.  
Thus for dense matrix multiply, GPUs are potentially 10x 
faster and this is roughly the difference observed in practice.  

The diagonal lines reflect memory bandwidth. Since 
bandwidth is flow in bytes/second it defines a linear 
relationship between the x-axis (flops/byte) and the y-axis (in 
flops/sec). On a log-log graph, this relationship is always 
linear with unit slope. From the graph we see that have much 
higher main-memory bandwidth. This leads to potential 
order-of-magnitude advantage for sparse as well as dense 
operations. This is very significant for machine learning on 
typical data (text, social networks, web data, server logs,..). 

Roofline design provides a systematic way to evaluate 
the potential throughput of an algorithm on the basis of the 
resources (especially the types of memory) that it uses. The 
roofline limit then serves as a target for the final performance 
of the algorithm. While rooflining does not provide guidance 
on how to design an algorithm to approach the limit, 
knowledge of the limit provides a target to work toward, and 
it may suggest strategies for improvement.  

This simple picture becomes more complex as we 
consider memory capacity. A GPU has several forms of 
memory of varying speeds and capacities. A CPU also has 
other memory types but they are provisioned only as caches, 
not directly accessible to the programmer, and enticing the 

 

Figure 1.  Rooflines for a typical CPU and GPU  
Figure 2.                 Memory capacities and throughput 

SpMM: Sparse-Dense MM

SDDMM: Sampled Dense-Dense MM
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I/O Lower Bounds => Op. Intensity Upper Bounds 

Algorithm #Float-Ops I/O Lower Bound OI Upper Bound

Matrix Multiplication 2N3 16*N3/C1/2 bytes (1/8)*C1/2
☺

FFT 2*N*log2N 16*N*log2N/log2

C

(1/8)*log2C 

Conj. Gradient (2D Heat 

Eqn.)

20*N2*T 48*N2*T 5/12 

Jacobi 2D 9*N2*T 48*N2*T/C1/2 (3/16)*C1/2
☺
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Why Optimizing Data Movement is Fundamentally Hard
♦ Suppose FLOPs were expensive relative to data movement

▪ Efficient functions can be simply composed, because computational 
complexity is additive

▪ Let fopt1 and fopt2 be efficient implementations of functions f1 and f2
▪ An efficient implementation for  (f1 o f2) can be simply constructed by 

composing the individual implementations: (fopt1 o fopt2) [concatenate 
CDAGs]

♦ Parallelization across multiple cores

▪ If FLOP costs dominate data movement costs, main parallelization issue is 
load-balancing of work across cores

▪ If fopt1 and fopt2 are each individually load-balanced, so will (fopt1 o fopt2)

♦ But what about the current reality: FLOPs are cheap, but data 
movement is expensive?

▪ Problem: Data movement complexity is NOT additive under composition
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♦ Computational complexity is additive when composing 
operations
S1: r1 = f1(a1,..an); 

S2: r2 = f2(r1,b1,…bm);

▪ comp-cost(S1;S2) = comp-cost(S1)+comp-cost(S2)

♦ But data-movement complexity is not additive with 
composition
▪ min-data-mvmt(S1;S2) can be less than min-data-mvmt(S1)+min-

data-mvmt(S2)

Operation Composition Comp-

Cost

Minimum

Data-Mvmt

Dot-Product N scalar mult-adds O(N) O(N)

Matrix-Vector Product N Dot-Products O(N2) O(N2)

Matrix-Matrix Product N Mat-Vec

Products

O(N3) O(N3/√C )

Composing Operations: Computation vs. Data Movement
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Lower Bounds Analysis: When is Fusion Useful?

Fusion cannot be useful when:

Out1

Op1

In1

Out2

Op2

In2

Op1

2

In1

Out2

Fuse?

Lower Bounds can be composed

Max I/O reduction from 

fusion is twice size of Out1

IOLB(Op12) = IOLB(Op1) + IOLB(Op2) – 2 

|Out1|

IOLB(Op1) + IOLB (Op2) is much larger than |Out1|

Lower bounds analysis can help prune many configs.



Optimizing the Four-Index Integral Transform
♦ 4-D integral tensor (A) 

transformed from one basis to 

another (C) using transformer B

♦ Implemented as sequence of four 

tensor contractions

♦ Combinatorially explosive number 

of fusion/tiling/distribution choices

♦ NWChem comp. chem. suite 

implements 15 different variants 

of 4-index transform; none optimal
♦ New “communication-optimal” 

distributed 4-index transform 
developed by OSU/PNNL 
collaboration
▪ Space of configs. pruned by data 

mvmt. lower bounds analysis 
▪ Significant improvement over 

previous NWChem versions
▪ Incorporated into NWChem



Open Questions

u Can tools be developed to automatically characterize data 
movement complexity of algorithms?

u Can a general methodology be developed for use of data-
movement lower-bounds in guiding design-space 
exploration?

u Can data-movement lower-bounds be used for algorithm-
architecture co-design? 

▪ Example: Are 16 registers too few for efficient implementation of a 
CNN (Convolutional Neural Network) kernel?

u Can data movement constraints of irregular/sparse 
applications be characterized and used for optimization?



Research Direction: Pattern-Specific Optimization



Portability: OpenACC and OpenMP-Offload
u Directive-based prog. models for GPU/Accelerator offload
▪ Spec. of computation in source code very similar to sequential code

▪ Directives specify parts of code to be offloaded to GPU

▪ User can optionally control when data is moved between CPU/GPU

Source: Jeff Larkin

OpenMP OpenACC



Case Study: OpenACC and OpenMP
u Directive based optimization of radiation scheme ACRANEB2 

in Danish weather prediction model: KNL, Pascal GPU, Xeon
▪ Poulsen and Berg, http://www.dmi.dk/fileadmin/user_upload/Rapporter/TR2017/SR17-

22.pdf

u Conclusion: Even with directive-based models, achieving high 
performance requires different source-code versions
▪ Loops had to be rearranged and data-structure layouts changed

▪ Performance difference for variants can be huge

♦ X: Code version tuned for KNL

♦ G: Code tuned GPU with same 
data structures

♦ GNM: GPU-tuned, with 
transposed data structures

▪ Good perf. boost on GPU, 
but about 100x slowdown for 
KNL!

http://www.dmi.dk/fileadmin/user_upload/Rapporter/TR2017/SR17-22.pdf
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Performance: Stencil DSL vs. General-Purpose
♦ DSL-generated GPU code achieves much higher performance
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Domain-Specific Optimization: Tensor Contractions

• Tensor contraction is high-dimension analog of matrix-matrix product

• Each loop index appears in exactly two tensors
• “Contraction index” appears only in input (rhs) tensors: {m, n}

• “External index”: appears in output tensor and one input tensor: {i, k} {j, l}

• TensorGen project (OSU/PNNL) is developing domain-specific compiler for multi-

target (GPU, multi/manycore CPU) optimization of arbitrary tensor contractions

• Specialized schema for optimized data movement/buffering

for (i=0; i<N; i++)

for (j=0; j<N; j++)

for (k=0; k<N; k++)

for (l=0; l<N; l++)

for (m=0; m<N; m++)

for (n=0; n<N; n++)

C[i][j][k][l] += A[i][m][k][n]*B[j][n][l][m];

 

Domain-Specific Optimization: Tensor Contractions 

 

• Tensor contraction is high-dimension analog of mat-mat product 

• Each loop index appears in exactly two tensors 

• “Contraction index” appear only in input (rhs) tensors: {m, n} 

• “External index”: in output and one input tensor: {i, k} and {j, l} 

for (i=0; i<N; i++)

 for (j=0; j<N; j++)

  for (k=0; k<N; k++)

   for (l=0; l<N; l++)

    for (m=0; m<N; m++)

     for (n=0; n<N; n++)

      C[i][j][k][l] += A[i][m][k][n]*B[j][n][l][m];
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Matrix Multiplication Schema

C[i][j] += A[i][k]*B[k][j]

❑ A 2D thread-block computes a 2D 
slice (TixTj) of C using a Ti x Nk slice 
of A and a Nk x Tj slice of B

❑ Registers are used to hold the TixTj
slice of C

❑ A TixTk slice of A and a TkxTj slice of 
B are loaded into Shared Memory (1)
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(2)
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(3) Outer-Product

T
i

Tj

(4)

Matrix Multiplication Schema

C[i][j] += A[i][k]*B[k][j]

❑ A TixTk slice of A and a TkxTj slice of 
B are loaded into Shared Memory (1)

❑ A column-slice of A and row-slice of B 
are loaded from shared memory to 
registers (2)

❑ Outer-product contribution added to 
slice of C (3)

❑ Slice of C is written out to global 
memory (4)



23

Generalizing for Arbitrary Tensor Contractions

▪ Custom optimizer exploits “orthogonal reuse directions” property

▪ t2 reuse: {b,c,k}; v2 reuse: {a,i,j}; t3 reuse: {d} (reduction)

▪ 2D multi-level tiling (shared-memory + registers); streamed tiling along {d}

▪ Slice of t3 held in register tiles; maximize reuse of data slices of t2 and v2

r_t3	(reg.)

(1)	GMEM	to	SMEM

(2)	SMEM	to	Registers

(3)	Outer-Product

g_t3	(GMEM)

(4)	Reg.	to	GMEM

g_t2	(GMEM)

Nd

N
i
x	

N
j
x	

N
a

T i
x	

T j
x	

T a

⌈Nd/Td⌉ Steps

s_v2	(SMEM)
Td

s_t2	(SMEM)

Td

Tk x	Tc xTb

g_v2	(GMEM)

Nk x	Nc x	Nb

Nd

⌈ N
d
/T

d
⌉

St
e

p
s

r_
t2
	(
re
g
.)

r_v2	(reg.)

Global	Memory	(GMEM)

Shared	Memory	(SMEM)

Registers	(Reg.)

Figure 2: Overview of the computation of a tensor contraction

for sd2 1 in a thread block

D. Efficient Index Calculation using Pre-computed Arrays

When we load the inputs from global memory to shared

memory and store the output from register to global memory,

we need to figure out the global memory addresses of the

inputs and the output for each thread. Because of register

tiling, each thread needs to calculate several addresses.

When each thread calculates the addresses from the index

values, expensive integer division and modulo operations

inevitably need to be used. Furthermore, some registers are

required to keep the index values. To minimize this overhead,

we use pre-computed arrays that are generated before kernels

are launched to get the calculated addresses of global memory

for inputs such as t2 and v2 and output tensor t3. These are

stored in read-only texture memory.

Fig. 1 shows pseudo-code for our optimized execution of

a portion of a single tensor contraction operation mapped to

a GPU thread block for the sd2 1 kernel. Some of the index

arithmetic is elided (shown in “—”) to simplify the pseudo-

code.

V. FUSION FOR SYMMETRIZED TENSOR CONTRACTIONS

In this section, we discuss our approach to fusing tensor

contractions in CCSD(T) according to the two-level tiling

approach.

A. Constraints on Fusion

First of all, in Table I, tensor contractions in CCSD(T) have

the identical left-hand side (LHS). Therefore, it is technically

possible to fuse tensor contractions with different parts of input

tensors.

For the nine sd2 functions in CCSD(T), a thread block

requires nine pairs of t2 and v2. Because a thread block exclu-

sively produces a part of t3 such as Ti ⇥Tj ⇥Tk ⇥Ta⇥Tb⇥Tc,

the nine pairs of t2 and v2 are as follows:

• sd2 1: (t2) Nd ⇥Ta ⇥Ti ⇥Tj , (v2) Td ⇥Tk ⇥Tc ⇥Tb

Algor ithm 1: Pseudo-code of a tensor contraction for sd2

function
Data: pr e t2, pr e v2 and pr e t3 are pre-computed arrays to

find global memory addresses of t2, v2 and t3,
respectively.

1 kernel tensor contraction(g t3,g t2,g v2,pr et 2,pr ev 2,pr et 3)
2 shared double s t2[Ti ⇥Tj ⇥Ta ][Td ];
3 shared double s v2[Td ][Tk ⇥Tc ⇥Tb];
4 double r t2[Ta ] ; / / a col umn vect or ( Ta ⇥ 1)
5 double r v2[Tb] ; / / a r ow vect or ( 1⇥Tb)
6 double r t3[Ta ][Tb] ; / / r egi st er t i l e ( Ta ⇥Tb)
7 for i = 0 to dNd / Tde do

/ * ( 1) Load I nput s f r om Gl obal Memor y
t o Shar ed Memor y * /

8 if threadIdx.x < Td then
9 for j = 0 to Ta do

10 s t2[threadIdx.y + j ⇥ (Ti ⇥Tj )][threadIdx.x]
= g t2[pre t2[—] + (threadIdx.x)];

11 end
12 for j = 0 to Tb do
13 s v2[threadIdx.x][threadIdx.y + j ⇥ (Tk ⇥Tc )]

= g v2[pre v2[—] + (threadIdx.x)];
14 end
15 end
16 syncthreads();

/ * ( 2) Load I nput s f r om Shar ed Memor y
t o Regi st er s * /

17 for j = 0 to Td do
18 for k = 0 to Ta do
19 r t2[k] = s t2[—][ j ];
20 end
21 for k = 0 to Tb do
22 r v2[k] = s v2[j ][—];
23 end

/ * ( 3) Cont r act I nput s t o gener at e
Out put on Regi st er s * /

24 for i = 0 to Ta do
25 for j = 0 to Tb do
26 g t3[i][j] += r t2[i] * r v2[j];
27 end
28 end
29 end
30 syncthreads();
31 end

/ * ( 4) St or e t he Resul t s f r om Regi st er s
t o Gl obal Memor y * /

32 for i = 0 to Ta do
33 for j = 0 to Tb do
34 g t3[pre t3[—]] = r t3[i][j];
35 end
36 end

• sd2 2: (t2) Nd ⇥Ta ⇥Tj ⇥Tk , (v2) Td ⇥Ti ⇥Tc ⇥Tb

• sd2 3: (t2) Nd ⇥Ta ⇥Ti ⇥Tk , (v2) Td ⇥Tj ⇥Tc ⇥Tb

• sd2 4: (t2) Nd ⇥Tb ⇥Ti ⇥Tj , (v2) Td ⇥Tk ⇥Tc ⇥Ta

• sd2 5: (t2) Nd ⇥Tb ⇥Tj ⇥Tk , (v2) Td ⇥Ti ⇥Tc ⇥Ta

• sd2 6: (t2) Nd ⇥Tb ⇥Ti ⇥Tk , (v2) Td ⇥Tj ⇥Tc ⇥Ta

• sd2 7: (t2) Nd ⇥Tc ⇥Ti ⇥Tj , (v2) Td ⇥Tk ⇥Tb ⇥Ta

• sd2 8: (t2) Nd ⇥Tc ⇥Tj ⇥Tk , (v2) Td ⇥Ti ⇥Tb ⇥Ta

• sd2 9: (t2) Nd ⇥Tc ⇥Ti ⇥Tk , (v2) Td ⇥Tj ⇥Tb ⇥Ta

Then, if a thread block has the above nine pairs of partial
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CCSD(T) Tensor Contractions in NWChem

▪ CCSD(T) is an accurate but extremely compute-intensive method in NWChem

▪ New fused GPU kernels significantly outperform current GPU code in NWChem

▪ Code is being incorporated into NWChenEX
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Figure 10: Performance (in GFLOPS) of the 18 tensor contractions in CCSD(T), Ns = 24, where s 2 { i,j,k,a,b,c,l,d}
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Figure 11: Performance (in GFLOPS) of sd1 and sd2 functions on on V100 (Volta) and P100 (Pascal) GPUs
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Isolated Domain-Specific Compilers and Libraries
♦ Multi-target DSLs achieve performance & portability by:
▪ Use of appropriate internal representation of computation that facilitates 

effective choice of mapping/scheduling of computation/data

▪ Separation of high-level target-independent decisions from low-level 
platform-specific choices

▪ Use of platform-specific code-schema driven by key performance factors

♦ But each Domain-Specific compiler/library today is a stand-alone 
system

● No common infrastructure support for building new DSLs

DSL1 DSL2 DSLm

AVX PTX VHDLCUDA…
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Intermediate Pattern-Specific Layers?

♦ Can a small number of Pattern-Specific IRs be identified?

▪ DSLs perform domain-specific transformations and generate suitable PSIR

▪ Pattern-Specific Compiler performs platform-specific 

optimizations/transformations for different target platforms

DSL1 DSL2 DSLm

AVX PTX VHDLCUDA…

PSIR1 

…

PSIRk
…
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Matrices/Tensors: Orthogonal Aligned Reuse Pattern

♦ Many matrix/tensor computations in computational science and data-

science/ML have the following characteristics

▪ Access functions for matrix/tensor indices are simply surrounding loop indices

● C[i][j] += A[i][k]*B[k][j]

● A[i][r] += T[i][j][k]*B[j][r]*C[k][r]

▪ Reuse of data elements occurs only along iteration space axes (1D) or 

product-space of axes (2D and higher reuse)

▪ All surrounding loops represent reuse directions for one or more arrays

▪ Optimal tile size for innermost tiling loop is always one (or vector-length if 

that loop is innermost intra-tile loop) => streaming

▪ Permutation of outer tiling loops have negligible effect on data mvmt. vol.

♦ Significant promise for efficient data-volume based model-driven loop 

transformation and multi-target code generation for this class of 

computations
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Summary

♦ End of Moore’s Law implies greater customization and need to make more 

efficient use of limited resources

♦ Achieving performance, productivity, and portability will be even more 

challenging => Compilers must play a bigger role

♦ Fundamental bottleneck: data movement (FLOPs are relatively cheap)

▪ Need advances in understading inherent data movement complexity of algorithms

♦ Domain/pattern-specific compiler optimization is a promising direction

▪ Need to identify a small number of computational patterns with wide coverage, and 

pattern-specific compiler transformation strategies for the patterns

♦ Many challenges and opportunities: exciting time to work on compiler 

research!
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