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High-Performance Software Development Challenge
+ Low Performance
= Very challenging to achieve high performance for GPUs and FPGAs
= Requires understanding of low-level arch. details
+ Low Productivity

= Need to program using different programming models: OpenMP for
multicores, CUDA/OpenCL for GPUs, Verilog/VHDL for FPGAs

= Steep learning curve: CUDA known by few; Verilog/VHDL known by fewer
= Parallel programming is much more difficult than sequential C/C++

+ No Portability
= Multiple versions of code must be maintained for different platforms
+ Challenges will get worse in the future: compilers must do more!

= Research Direction 1: Understanding Data Movement Complexity
= Research Direction 2: Domain/Pattern-Specific Transformation/Code-Gen



Research Direction 1: Data Movement Complexity



Data Movement Cost: Energy Trends
10000 = FLOPs almost free;

& data movement
s> cost is dominant
s
1000 — l
Minimizing amount
o of data _molvem_e_nt I
% 100 ‘increasingly critica
2,
S l “ 45 nm
= 10
o g 11 nm
1 _
¥ @& R & &
‘(\,0 \"} ,Q\ ,(‘?\ Q,& Q@ (}0@
g & & & &
S & IS
R Q}\*‘ ¢
v Source: Jim Demmel, John Shalf

4



Data Movement Cost: Performance Trends
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+ Nvidia GPUs over 5 generations: Fermi, Maxwell, Kepler, Pascal, Volta
¢ Peak GFLOPs and Peak Mem BW have both increased

+ But machine balance (Peak_GFLOPs/Peak_BW) has steadily risen => more and more
constrained by data movement



Computational vs. Data Movement Complexity

for (i=1; IKN-1; i++)
for (j=1;)<N-1; j++)
Al = AlJQ-1] + Afi-1]0];
Untiled version
Comp. complexity: (N-1)?2 Ops

2D-Seidel with single sweep; N=200
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for(it = 1; it<N-1; it +=B)
for(jt = 1; jt<N-1; jt +=B)
for(i = it; i < min(it+B, N=1); i++)
for(j = jt; j < min(jt+B, N=1); j++)
AlIGT = Ali=1]0] + ADji=11;

Tiled Version
Comp. complexity: (N-1)? Ops

Tiled (tilesize=25)
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Modeling Data Movement Complexity: CDAG

for (i=1; i<N-1; i++)
for j=1;j<N-1; j++)
All0] = AlIID-1] + Af-1][];

=6

CDAG for N

for(it = 1; it<N—1; it +=B)
for(jt = 1; jt<N-1; jt +=B)
for(i = it; i < min(it+B, N=1); i++)
for(j = jt; j < min(jt+B, N=1); j++)
ADGT = Ali=1]01 + ADG-11;

Develop upper bounds on min-cost

!

Minimum possible data movement cost?

No known effective solution to problem

T

Develop lower bounds on min-cost

Hong and Kung: The Red-Blue Pebble Game, STOC 1981




Lower Bounds: Matrix Multiplication

Hong/Kung [STOC 1981]: Any valid for (i=0; I<N; i++)
implementation of the standard mat-mult for (=03J<N;j++)
algorithm on a system with cache capacity C foé[%( [|50+,E<AI\I[i’]TIJ<F]iI)3[k][i]'
will require Q(N3A/C) volume of data movement ’
between main-memory and cache

Irony et al. [JPDC 2004]: Lower bound with rocessor
scaling constant: _1_ V" _ ¢
2\2 JC _ ache size
Dongarra et al. [JFOCS 2008]: Improved F C |
constant from 1/(22) to 1.83 l t R
Smith, Van de Geijn; Langou: 1.83->2 Main Memory ‘

Efficient tiled execution has data volume of
2N3A/C => Minimal possible data movement!
Open problem: Bounds for other algorithms

= Tight data-movement lower bounds (with scaling
constants) are unknown for most algorithms



Example: Erroneous Roofline Limit

+ Recent paper contrasts achieved performance b_%/ new GPU implementations
of sparse-dense matrix-multiplication (SpMM) with GPU “roofline” limits

+ But Ol used is not a proper upper-bound for SpMM, because it is based on
pessimistic reasoning about possible data reuse
+ Leads to incorrect conclusion that developed implementation is quite close to

“best” possible
= >150 GFLOPs measured on same GPU with Nvidia’s cuSPARSE SpMM

Dense matrix multiply €
Sparse matrix multiply ®
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Jpe ons ansity (lops/byte)
Operation Roofline Limit Observed Performance
A*S 72 gflops 45 gflops
SpMM: Sparse-Dense MM » - R8lop g1'op
A*S 72}(@5 31 gflops
N
SDDMM: Sampled Dense-Dense MM» S°(A*B) 75 gflops 63 gflops




/0 Lower Bounds => Op Intens:ty Upper Bounds
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Why Optimizing Data Movement is Fundamentally Hard
+ Suppose FLOPs were expensive relative to data movement

= Efficient functions can be simply composed, because computational
complexity is additive

= Let fopt, and fopt, be efficient implementations of functions f, and f,

= An efficient implementation for (f, o f,) can be simply constructed by
composing the individual implementations: (fopt, o fopt,) [concatenate
CDAGs]

+ Parallelization across multiple cores

= |f FLOP costs dominate data movement costs, main parallelization issue is
load-balancing of work across cores

= Iffopt, and fopt, are each individually load-balanced, so will (fopt, o fopt,,

+ But what about the current reality: FLOPs are cheap, but data
movement is expensive?

= Problem: Data movement complexity is NOT additive under composition

11



Composing Operations: Computation vs. Data Movement
+ Computational complexity is additive when composing
operations

S1:r1 =f1(al,..an);
S2:r2 =12(r1,b1,...om);
= comp-cost(S1;S2) = comp-cost(S1)+comp-cost(S2)
+ But data-movement complexity is not additive with
composition
= min-data-mvmt(S1;S2) can be less than min-data-mvmt(S1)+min-
data-mvmt(S2)

Operation Composition Comp- | Minimum
Cost | Data-Mvmt

Dot-Product N scalar mult-adds O(N) O(N)




Lower Bounds Analysis: When is Fusion Useful?

||n1|

| Lower Bounds can be composed

Outl [Fuse?
é
In2

10,5(0p12) = 10,5(0p1) +10,5(0p2) - 2
|Out1]

Max 1/0 reduction from
fusion iIs twice size of Outl

@ | outz2 | Fusion cannot be useful when:

| Out2 |

10, 5(Op1) + 10,5 (Op2) is much larger than |Out1|

Lower bounds analysis can help prune many configs.
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Optimizing the Four-Index Integral Transform

+ 4-D integral tensor (A) Cla, B,7,0] =
transformed from one basis to
another (C) using transformer B | Y Ali,j.k,0]-Bla,i|.B[3, j].B[y,k].B[5, ]

+ Implemented as sequence of four | ..k
tensor contractions ‘

+ Combinatorially explosive number . - o .
of fusiontiling/distribution choices Ol l] = ZA[Z’J’R’”'B[O"Z]
+ NWChem comp. chem. suite

implements 15 different variants  (02[a, 8,k,1| = Y |01]a, 5, k, 1} B[,
of 4-index transform; none optimal j

+ New “communication-optimal’
distributed 4-index transform 03|a, B,7,1] = ;:|O2[a, B, k, l]‘.B v, k]
developed by OSU/PNNL L

collaboration

= Space of configs. pruned by data Cla,B,7,0] = Z 03|a, B,7,1].B4, ]
mvmt. lower bounds analysis l .

= Significant improvement over O 1))
previous NWChem versions N

s |ncornaorated into NWC hem




Open Questions

u Can tools be developed to automatically characterize data
movement complexity of algorithms?

u Can a general methodology be developed for use of data-
movement lower-bounds in guiding design-space
exploration?

u Can data-movement lower-bounds be used for algorithm-
architecture co-design?

= Example: Are 16 registers too few for efficient implementation of a
CNN (Convolutional Neural Network) kernel?

u Can data movement constraints of irregular/sparse
applications be characterized and used for optimization?



Research Direction: Pattern-Specific Optimization



Portability: OpenACC and OpenMP-Offload

u Directive-based prog. models for GPU/Accelerator offload
= Spec. of computation in source code very similar to sequential code

= Directives specify parts of code to be offloaded to GPU
= User can optionally control when data is moved between CPU/GPU

void saxpy(int n, | void saxpy(int n, |
float a, float a,
float *x, float *x,

float *restrict y) float *restrict y)

{
#pragma omp parallel for acc loop

for (int 1 = 0; 1 < n; ++1i) for (int i = 0; 1 < n; ++1i)

saxpy (1<<20, 2.0, x, y); saxpy (1<<20, 2.0, x, y)~’




Case Study: OpenACC and OpenMP

u Directive based optimization of radiation scheme ACRANEB2
in Danish weather prediction model: KNL, Pascal GPU, Xeon

= Poulsen and Berg, http:/iwww.dmi.dk/fileadmin/user upload/Rapporter/TR2017/SR17-
22.pdf

u Conclusion: Even with directive-based models, achieving high
performance requires different source-code versions

= Loops had to be rearranged and data-structure layouts changed
= Performance difference for variants can be huge

1000 ~

+ X: Code version tuned for KNL

+ G: Code tuned GPU with same =
data structures = 100

+ GNM: GPU-tuned, with
transposed data structures

= (Good perf. boost on GPU,
but about 100x slowdown for

1
KNL' GNM code G code X code

lo

EmP100
W2S E5-2699v4
KNL-7210

=
o

Time to solution [s]



http://www.dmi.dk/fileadmin/user_upload/Rapporter/TR2017/SR17-22.pdf

Performance: Stencil DSL vs. Generai-Purpose

+ DSL-generated GPU code achieves much higher performance
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Domain-Specific Optimization: Tensor Contractions

C.[fk! — Z Afmkn ' Bjn!m
mn

1<N; 1++)
j<N; j++)
; k<N; k++)
0; l<N; 1++)
= m<N,; m++)
; n<N; n++)
[k][1] += A[1][m] [k] [n]*B[J] [n][1][m];

for (i=
for (
for
for
for

for

Cl1]

0;
7=0;
(k=0;
(1=
(m
(

IIO‘

n=0;
[J]

« Tensor contraction is high-dimension analog of matrix-matrix product

 Each loop index appears in exactly two tensors
« “Contraction index” appears only in input (rhs) tensors: {m, n}

» “External index”: appears in output tensor and one input tensor: {i, k} {j, I}
 TensorGen project (OSU/PNNL) is developing domain-specific compiler for multi-
target (GPU, multiimanycore CPU) optimization of arbitrary tensor contractions

 Specialized schema for optimized data movement/buffering



Matrix Multiplication Schema

ClID] +=AD]K]*B[K]l]

Q A 2D thread-block computes a 2D
slice (T|ijhof C using a Ti x Nk slice
of Aand a Nk x Tj slice of B

O Registers are used to hold the TixT] S
slice of C (1)1

O ATixTk slice of Aand a TkxT] slice of
B are loaded into Shared Memory (1)

Jr,
5:5:3:3:3:5:3:3:3:3:5:5:3:5:5 (1) SMEN{

............
A

...............
................




Matrix Multiplication Schema

ClID] +=AD]k]*BIK][]

O ATIXTk slice of A and a TkxT] slice of
B are loaded into Shared Memory (1)

aQ A column-slice of A and row-slice of B
are loaded from shared memory to
registers (2) (1))

Q O_uter-Product contribution added to
slice of C (3)

QO Slice of C is written out to global
memory (4)

o ) oM —— =
) (1) (3) OUter'Pl'Odl(lé‘; ............ e
‘ . LRLLLTI 2‘ ‘

GMEM SMEM




Generalizing for Arbitrary Tensor Contractions
t3[k, |, I, ¢, b, a] -=12[d, a, I, J] * v2[d, Kk, c, b]

~

© N XN, XN,
O GlobalMemorydGMEM) )
Q Shared@emorydSMEM)

O RegistersfReg.)

38

Ng
(1)&GEMEMROBMEM g_v2GMEM)
T, XET, xT
e N, ™ A~ " |s_v2asMEm)
© JSMEMtoRegisters N
é r_v2ireg.)
a &
E_ g (4)Re
2 S
L |
- /) 2ASMEM) = r_t3qreg.)
s t
g_t2HGMEM) - (3)@uter-Product - 4

g_t3§GMEM)
= Custom optimizer exploits “orthogonal reuse directions” property
= t2reuse: {b,c,k}; v2 reuse: {a,i,j}; t3 reuse: {d} (reduction)
= 2D multi-level tiling (shared-memory + registers); streamed tiling along {d}
Slice of t3 held in register tiles; maximize reuse of data slices of t2 and v2;



CCSD(T) Tensor Contractions in NWChem

sdl_1 3k, j,1,¢,b,a]— = t2[l, a, b, ] * v2]k, j,c,l]||sd2_1  t3[k,j,i,¢c, b, a]l— = t2[d, a,1, j] * v2[d, k, c, ]
sdl_2 3k, j,1,¢,b,al+ = t2[l, a, b, j] * v2[k,1,c,1]||sd2_2  t3[k, ], i, ¢, b, a]l— = t2[d, a, j, k] * v2]d, 1, c, b]
sdl1_3 3[k,7,1,¢c,b,a]— = t2[l, a,b, k] * v2[j,1,c,1]||sd2_3  t3[k,],i,c,b,al+ = t2[d,a,i, k| *x v2[d, j, c, ]
sd1_4 t3[k,j,i,¢,b,a]— = t2[l, b, c,1] x v2[k, 7, a,l]||sd2_4 t3[k j,t,¢,b,al+ = t2[d, b, 1, j| * v2[d, k, c, a
sd1.5  t3[k,7,1,¢,b,al+ = t2[l,b, c, j| * v2[k,1,a,l]|[sd2_5  t3[k,j,i,¢,b,al+ = t2[d, b, j, k] * v2[d, i, c, a]
sdl_6 3[k, 7,1, ¢, b,a]— = t2[l, b, c, k] * v2[j,1,a,l]||sd2_6  t3[k,j,1,c,b,al— = t2[d, b, 1, k] * v2[d, j, c, a]
sd1_7 3[k,j,1,c,b,al+ = t2[l, a, c,i] * v2[k, j,b,1]||sd2_7  t3[k,j,i,¢,b,al— = t2[d, c, 1, j] * v2[d, k, b, a
sdl_8 3[k,j,i,¢c,b,al— = t2[l, a, c, j] * v2[k,1,b,1]||sd2_8  t3[k,j,%,¢c,b,a]l— =t2[d, c,j, k] * U2[d,z, b, al
sd1_9 t3[k,j,1,¢,b,a]+ = t2[l,a,c, k] * v2[j,14,b,1]||sd2_9  t3[k,j,%,c,b,al+ = t2[d, c, i, k] x v2[d, j, b, a
0000 & 1Xernel 2Xernels & NWChem OpenACC
4962.2 1710.0 4926.4
5000 4419.5
4127.5
2000 g 3728.5 g 3643.6 % 3596.0 400 %
. 3157.0
g 3000 2645.1
2000 %%
1000 844.2 894.3 818.6 . %%
0 V% o] B i
Size-A Size-B Size-C Size-C Size-D
VoltaZ(Vv100) PascaldP100)
= CCSD(T) is an accurate but extremely compute-intensive method in NWChem
= New fused GPU kernels significantly outperform current GPU code in NWChem
|

Code is being incorporated into NWChenEX
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Isolated Domain-Specific Compilers and Libraries
o Multi-target DSLs achieve performance & portability by:

= Use of appropriate internal representation of computation that facilitates
effective choice of mapping/scheduling of computation/data

= Separation of high-level target-independent decisions from low-level
platform-specific choices

= Use of platform-specific code-schema driven by key performance factors
¢ But each Domain-Specific compiler/library today is a stand-alone

DSL

m

system
No common infrastructure support for building new DSLs
DSL, DSL,
AVX | PTX CUDA |VHDL
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Intermediate Pattern-Specific Layers?

+ Can a small number of Pattern-Specific IRs be identified?
= DSLs perform domain-specific transformations and generate suitable PSIR

= Pattern-Specific Compiler performs platform-specific
optimizations/transformations for different target platforms

DSL

DSL,| [DSL,| -
PSIR, |---| PSIR,
AVX | PTX CUDA |VHDL

26



Matrices/Tensors: Orthogonal Aligned Reuse Pattern

+ Many matrix/tensor computations in computational science and data-
science/ML have the following characteristics
= Access functions for matrix/tensor indices are simply surrounding loop indices

CliJi] += AlK]BIK][]
- A[i]ir] += THHIKIBHI*CLK]IT]
Reuse of data elements occurs only along iteration space axes (1D) or
product-space of axes (2D and higher reuse)

All surrounding loops represent reuse directions for one or more arrays

Optimal tile size for innermost tiling loop is always one (or vector-length if
that loop is innermost intra-tile loop) => streaming

Permutation of outer tiling loops have negligible effect on data mvmt. vol.

+ Significant promise for efficient data-volume based model-driven loop
transformation and multi-target code generation for this class of
computations

27



Summary

End of Moore’s Law implies greater customization and need to make more
efficient use of limited resources

Achieving performance, productivity, and portability will be even more
challenging => Compilers must play a bigger role

Fundamental bottleneck: data movement (FLOPs are relatively cheap)
= Need advances in understading inherent data movement complexity of algorithms
Domain/pattern-specific compiler optimization is a promising direction

» Need to identify a small number of computational patterns with wide coverage, and
pattern-specific compiler transformation strategies for the patterns

Many challenges and opportunities: exciting time to work on compiler
research!
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