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Preamble

m Microstructure and its evolution
m Phase field modelling
m Examples: Six-fold anisotropy on morphology / Solidification

m Way forward!
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Figure: CMEG: part of materials and process modelling lab
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Figure: New material development cycle: 10 to 20 years. Can we bring it
down to less than 5 years? Xiong and Olson, npj Computational Materials,
2016
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Integrated Computational
Materials Engineering (ICME):

Implementing ICME in the Aerospace,
Automotive, and Maritime Industries
Microstructure

Figure: ICME: The minerals, metals and materials society (TMS) study,
2013



Tools and techniques

Phase field
modelling

P Gururajan

Microstructure

* Residual stress
distribution

* Temperature gradients
* Fluid flow

* Microstructure evolution
« Composition profiles

« Solid-liquid interfacial energy, anisotropy
* Growth velocities

Material properties
« Input for higher scale models

Figure: Computational materials science: toolsand techniques
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Microstructure

Figure: Microstructure (a Ni-base superalloy). Xu et al, Met. Mat. Trans.
A, 1998

Structure, shapes, sizes and distribution of interfaces
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Figure: Effect of heat treatment. Xu et al, Met. Mat. Trans
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Figure: Dendrites during solidification. David et al, JOM, 2003
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At Homogeneous system with noise

Figure: A homogeneous alloy with a slighlty noisy composition profile



Pure material solidification
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Undercooled melt

A few movies

Nucleus

LN

Figure: An undercooled melt with insulated sides and nucleus on one of the
walls. The interfacial energy is 4-fold anisotropic.
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Undercooled melt

A few movies

Q Nucleus

Figure: An undercooled melt with insulated sides and nucleus at the centre.
The interfacial energy is 6-fold anisotropic.



Spinodal decomposition
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A few movies

Figure: Regions rich in A (B) become richer in A (B) with time.
Microstructures at times 0, 100 and 1000 units.
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The phase field method, like many other modeling ap-
proaches, is practically limited by the computational expense

entailed in running large simulations. The challenge stems
e from the need to resolve a diffuse interface that has a dif-
fuseness that is on a much smaller length scale than a typical
microstructural evolution length scale.

—Modeling Across Scales: A Roadmapping Study for Con-
necting Materials Models and Simulations Across Length and
Time Scales, TMS study report, 2015
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Phase el Common software: Micress™ FiPy™ OpenPhase™ and MOOSE
(Marmot)™

Compare with VASP, LAMMPS, ParaDIS, ...

Phase field: an approach and not a set methodology (like FEM)

pfHUB: maintained by NIST
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Phase field Jc

modling 5; = VMV = VMVig(c) - kV2c] (1)
o)
O = —Lp=LIxV — (o) 2)

Ginzburg-Landau, Alan Turing (Chemical morphogenesis), ...



Characteristics of phase field models
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m Interfaces are not sharp; diffuse interface model

e G m No tracking of interface: numerical solutions are easier

modelling

m Gradient energy coefficient: interfacial energy contributions
(Gibbs-Thomson, for example) are automatically accounted for

m Topological singularities (splitting or disappearance of
interfaces): naturally taken care of

m Elastic stress, magnetic and electric field: can be coupled by
adding the relevant free energy term!



What is phase field modelling?
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Some representative viewpoints:

m An approach to obtain solutions of PDEs that are hard to solve
e G — by introducing artificial regions of continuity where there are
modeling discontinuities (Mathematical)

m Non-linear partial differential equations that lead to solutions
which are interesting patterns (Biology)

m Continuum equations derived from statistical mechanics that
lead (as solution) to interesting patterns (Physics)

m Partial differential equations that describe diffusion (of atoms
and heat) as well as phase transformations (Materials science)



Spectral technique
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dc

— = DV? 3
ot Ve (3)
Spatial Fourier transform of c: ¢ = [ c¢(x)exp [—ik - r]dV
Phase fed Turns the PDE into ODE:
dc
— = —Dk?¢ 4
p ¢ (4)

Semi-implicit Fourier spectral technique

Jc

5 = VMV = VMV[g(c) - £V2c] (5)

% = —Lu = L[kV?p — g(o)] (6)




Advantages of FFT
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Phase field
e m Periodic boundary conditions: representative volume elements

m Semi-implicit Fourier spectral technique
m Good, fast, open source FFT codes: FFTW



Extended Cahn-Hilliard free energy: anisotropic
interfacial energy
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g(c)
Phase field [
ase fiel _ 2HUCIJ
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For details: E S Nani and M P Gururajan, Philosophical Magazine Letters (2014)



Six fold anisotropy
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g Interfacial energy anisotropy / Point effect of diffusion / FG to CG

Att. kinetics anisotropy / SG to CG / Noise and Point Effect of Diff
From unpublished M Tech thesis of Mr. Abhinav Soni



Profiling on NIVIDIA® - K40C GPUs (Ternary alloy
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Profiling
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Ternary alloy I g
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Figu r€: Ni- 19 Cr- 5 Nb (wt.%) alloy - 3D isothermal
. dendrite at AT = 8.0 K, At = 58.0 ns for Ax = 50.0 nm.
Flgu Fe: Profiling of 3D phase-field code (384 x 384 x 1024)

Mohan and Phanikumar, Unpublished
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3000r  Time taken for 10000 timesteps

2000r

Time in seconds

1000

1024 1536 2048 2560 3672 4096

Domain length

P G Tennyson, G M Karthik, and G Phanikumar, Computer Physics
Communications, 2015.




Data Visualization
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Data files from each processor
written at specific time intervals as
unformatted .bin files

Phase field
modelling

m Data files collated and converted to
.mat files by Mat I/O library by
Christopher Hulbert

m Visualization of data output was
done in Matlab®

m MayaVi, created by Prabhu
Ramachandran, was used for 3- D
data visualization

S00 1000 1500 2000 2500 3000 3500 4000

P G Tennyson, G M Karthik, and G Phanikumar, Computer Physics Communications, 2015.
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Phase field m Phase field models: highly nonlinear, stiff PDEs

modelling

m Large scale computations solving phase field models: important
from an applications point of view

m There is plenty to explore: including developing standard, open
source code and its parallel implementation
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THANK YOU!
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