Challenges in fluid flow simulations using Exa-scale computing

Mahendra Verma IIT Kanpur

http://turbulencehub.org

<u>mkv@iitk.ac.in</u>

Hardware

From Karniakadis's course slides

AMD EPYC[™] 7551

– Specifications	# of CPU Cores: 32	# of Threads: 64	Base Clock: 2GHz
	Max Boost Clock: 3GHz	All Core Boost Speed: 2.55GHz	Total L3 Cache: 64MB
	Socket Count: 1P/2P	PCI Express Version: x128	Default TDP / TDP: 180W
– System Memory	System Memory Specification: 2666MHz	Memory Channels: 8	Mem BW (2S Theo): 341 GB/s

https://www.amd.com/en/products/cpu/amd-epyc-7551

NODE: 2 proc/node; Focus on a node

Flop rating for 2 procs: 2*32*24 = 1536 GF

Wants data ~ 8 TB/sec.

Cache, RAM, HD

Data transfer

FLOPS free, data transfer expensive (Saday)

Memory BW = 341 GB/s

SSD: transfer rate = 6 Gbit/s

peak IB Switch speed/port = 200 Gb/s

software challenges

For beginners

- Abundance (MPI, OpenMP, CUDA, ML)
- Leads to confusion and non-start..
- Structured programming
- Pressure to do the science..
- Some times CS tools are too complex to be practical.

For advanced users

- Optimised use of hardware.
- Structured and modular, usable code with documentation.
- Keeping up with upgrades and abundance (MPI3, ML, C++11, Vector processors, GPU, XeonPhi, Rasberry Pi).
- Optimization
- Interactions with users + programers

Now CFD (Computational fluid dynamics)

Applications

- Weather prediction and climate modelling
- Aeroplane and cars (transport)
- defence / offences
- Turbines, dams, water management
- Astrophysical flows
- Theoretical understanding

Field reversal

with Mani Chandra

Geomagnetism

Glatzmaier & Roberts Nature, 1995

Polarity reversals after random time intervals (tens of millions of years to 50K years).

Last reversal took place around 780,000 years ago.

Nek5000 (Spectral-element) simulation

Time = 10.6186

$(1,1) \rightarrow (2,2) \rightarrow (1,1)$

spectral-element code Nek5000

Chandra & Verma, PRE 2011, PRL 2013

Methods

- Finite difference
- Finite volume
- Finite element
- Spectral
- Spectral element

Spectral method

Example: Fluid solver

Procedure

$$f(x) = \sum_{k_z} \hat{f}(k_x) \exp[i(k_x x)]$$
$$df(x) / dx = \sum_{k_z} [ik_x \hat{f}(k_x)] \exp[i(k_x x)]$$

Set of ODEs

$$\frac{du_i(\mathbf{k})}{dt} = -jk_m \widehat{u_m(\mathbf{r})u_i(\mathbf{r})} - jk_i p(\mathbf{k}) - \nu k^2 u_i(\mathbf{k})$$

Time advance (e.g., Euler's scheme)

 $u_i(\mathbf{k}, t+dt) = u_i(\mathbf{k}) + dt \times \text{RHS}_i(\mathbf{k}, t)$

Stiff equation for small viscosity v (use exponential trick)

Nonlinear terms computation:

(pseudo-spectral)

Fourier transforms take around 80% of total time.

Tarang = wave (Sanskrit)

Spectral code (Orszag)

One code to do many turbulence & instabilities problems

VERY HIGH RESOLUTION (6144³)

Cores: 196692 of Shaheen II of KAUST

Opensource, download from <u>http://turbulencehub.org</u>

Chatterjee et al., JPDC 2018

Fluid MHD, Dynamo Scalar Rayleigh-Bénard convection Stratified flows Rayleigh-Taylor flow Liquid metal flows Rotating flow Rotating convection

> Periodic BC Free-slip BC

Instabilities Chaos Turbulence

No-slip BC Cylinder sphere Toroid (in progress) Rich libraries to compute Spectrum Fluxes Shell-to-shell transfer Structure functions New things Fourier modes Real space probes Ring-spectrum Ring-to-ring transfer

Tested up to 6144³ grids

Object-oriented design

Basis functions (FFF, SFF, SSF, SSS, ChFF)

Basis-independent universal function (function overloading)

e.g., compute_nlin (u. ∇)u,
(b. ∇)u, (b. ∇)b, (u. ∇)T.

General PDE solver

We can use these general functions to simulate MHD, convection etc.

Generated by Doxygen

Parallelization

Spectral Transform (FFT, SFT, Chebyshev)

Multiplication in real space

Input/Output HDF5 lib

FFT Parallelization

 $f(x,y,z) = \sum_{k_x} \sum_{k_y} \sum_{k_z} \hat{f}(k_x,k_y,k_z) \exp[i(k_x x + k_y y + k_z z)]$

Slab decomposition

Data divided among 4 procs

Transpose-free FFT

MPI vector, conconsecutive data transfer

12-15% faster compared to FFTW

Pencil decomposition

FFT scaling

On Shaheen 2 at KAUST with Anando Chatterjee, Abhishek Kumar, Ravi Samtaney, Bilel Hadri, Rooh Khurram

> Cray XC40 ranked 9th in top500

Chatterjee et al., JPDC 2018

Tarang scaling

On Shaheen at KAUST

• Weak scaling: When we increase the size of the problem, as well as number of procs, then should get the same scaling.

Average flop rating/core (~1.5 %)

Compare with BlueGene/P (~8%)

Overlap Communication & Computation ??

GPUs ??

Xeon Phi ??

To Petascale & then Exascale

Finite difference code

General code: Easy porting to GPU, MiC

Collaborators: Roshan Samuel Fahad Anwer (AMU) Ravi Samtaney (KAUST)

Summary

★ Code development

★ Module development

★ Optimization

★ Porting to large number of processors

★ GPU Porting

Acknowledgements

Students:	Ported to:
Anando Chatteriee	PARAM, CDAC
	Shaheen, KAUS
Abhishek Kumar	HPC system IITk
Roshan Samuel	
Sandeep Reddy	
	Eunding

Funding

Dept of Science and Tech., India Dept of Atomic Energy, India KAUST (computer time)

Faculty:

Mani Chandra

Sumit Kumar & Vijay

Ravi Samtaney

Fahad Anwer

Thank you!